TRENDS IN
HARDWARE/SOFTWARE

Charles E. Crume
Cleborne D. Maddux

LogoWriter:
An Introduction and Critique

Logo is a relatively new computer language that has recently be-
come popular in education. Although Logo has gained a reputation
as an excellent graphics language for children, many educators and
programmers do not realize that it is also a powerful general pur-
pose programming language that includes advanced features such as
subprocedures, list processing, and recursion.

WHAT IS LOGO?

Logo was developed by Seymour Papert, an MIT mathematician
and computer scientist who spent five years in Geneva studying
developmental child psychology with Jean Piaget. When Papert re-
turned to MIT, he put together “‘the Logo group’” and developed a

CHARLES E. CRUME is a Software Systems Analyst and Technical Consultant,
University of Nevada System Computing Services, Reno, NV 89557-0023.
CLEBORNE D. MADDUX is Professor of Education and Chairman, Department
of Curriculum and Instruction, University of Nevada, Reno, NV 89557-0023.

Computers in the Schools, Vol. 7(3) 1990
© 1990 by The Haworth Press, Inc. All rights reserved. 21

22 COMPUTERS IN THE SCHOOLS

new computer language based on Piagetian developmental psychol-
ogy (Papert, 1980). The language was Logo.

Papert developed Logo by modifying LISP, an existing computer
language commonly used by researchers in artificial intelligence
experiments. It is ironic that Logo is sometimes regarded merely as
a children’s graphics language, since neither LISP nor the original
version of Logo included any graphics capability.

THE LOGO CONTROVERSY

Recently, Logo has sparked a controversy among educational re-
searchers. This controversy is based on claims that have been made
about benefits to be gained from teaching the language to children.
Some of these claims have been made by Papert himself. The most
notable is his contention that Logo is capable of lowering the
boundary between child and adult thinking. Although this revolu- .
tionary claim has often been attacked, Papert’s critics sometimes
overlook the fact that his hypothesis called for specialized teaching
methods coupled with implementation of sweeping educational
changes in our schools. Because these changes (suspension of eval-
uation, a computer for every child, etc.) have not occurred and are
not likely to occur, Papert’s hypothesis may never be fairly tested
outside of a few artificial laboratory settings (Maddux & Johnson,
1988).

Other controversial claims have been made by a heterogeneous
group of Logo zealots. These claims consist of diverse contentions
about Logo’s ability to effect changes in children’s cognitive pro-
cesses. Such advocates have been accused of promoting Logo as
Wheaties of the mind. For an in-depth discussion of these and other
issues surrounding Logo, the interested reader is referred to Mad-
dux and Johnson (1988).

WHY TEACH LOGO?

While the controversy over Logo continues, we believe that Logo
is an excellent language for introducing children to computers and
programming. The learning of languages such as BASIC, FOR-
TRAN, and Pascal require lengthy study and practice before

Trends in Hardware/Software 23

enough is learned to permit doing anything interesting with the lan-
guage. (In fact, it could be argued that children at most levels of
mastery are seldom asked or encouraged to do interesting and crea-
tive things with such languages.) This is true because most com-
puter languages were designed to be useful for the solving of repeti-
tive, routine tasks on cumbersome mainframe computers. These
earlier languages were designed to run in batch mode and employed
arcane syntax rules and obscure, abstract, mathematically oriented
statement structure. Logo, on the other hand, was designed to be
attractive and highly motivating to beginners. Logo’s graphics com-
mands, for example, allow children to do interesting things after
only a brief introduction to the language. At the same time, Logo’s
list processing commands, subprocedures, and recursive capability
allow the writing of sophisticated programs in a simple but elegant
manner. This flexibility has prompted the observation that Logo has
“‘no threshold and no ceiling”’ (Billstein, Libeskind, & Lott, 1985,
p. 1).

Due to its simplicity, Logo eliminates many barriers to mastery
and seems to motivate many children to independent exploration of
Logo’s capabilities. At the same time, Logo’s power makes it a
candidate for inclusion in the junior and senior high school com-
puter curriculum.

PURPOSE OF THE ARTICLE

The first commercial implementation of Logo was in the late sev-
enties for the ill-fated Texas Instruments TI99/4A microcomputer.
As Logo’s popularity among educators has grown, numerous dia-
lects of the language have been developed for a variety of hardware.
A new dialect that adds word processing to the language is mar-
keted by LCSI (Logo Computer Systems, Inc.) and is called Logo-
Writer. According to Papert (1986), LogoWriter is a new medium
that will aid children in learning the ““high-order’” skills of writing.
The purpose of this article is to provide an introduction to LogoWri-
ter and an analysis of its strengths and weaknesses.

,

|
| 24 COMPUTERS IN THE SCHOOLS

LogoWriter version 1.0 was released in April of 1986. Designed
to run on the Apple 11, IBM PC, IBM PC Junior, and Commodore
64 microcomputers, it was priced at $395 with a yearly renewal fee
of $99. For this price, schools received a master disk for each of the
above microcomputers and an activity kit. Version 1.0 was limited
by several characteristics including the inability to leave a page
without saving it and (worse yet) an extremely limited work space.

LogoWriter version 1.1 was released in April of 1987. Version
1.1 rectified a number of bugs present in version 1.0. More impor-
tantly, LCSI had realized that many school officials objected to the
$99 annual renewal fee, and the company reacted by substituting a
one-time fee of $450. For this price, schools received four master
disks, one for each brand of microcomputer listed above. This as-
tute marketing decision contributed to LogoWriter’s present popu-
larity.

LogoWriter version 2.0 was released in September 1988. This
version was designed to run on the Apple II and IBM PC microcom-
puters. (The IBM PC Junior and Commodore 64 versions have not
been revised, and remain at level 1.1.) LCSI amended the one-time
fee of $450 to include a single master disk. (Buyers were required
to select either IBM or Apple II.) Version 2.0 increased the work
space from 64k to 128k and added network capabilities. Version
2.0 also added many new primitives. Among these are GET-
SHAPES, LEAVEPAGE, LOCK, and UNLOCK for scrapbook op-
erations; INT, ROUND, and SQRT for mathematical operations;
and COPYFILE, ERASEFILE, FILELIST, LOADPIC, LOAD-
TEXT, SAVEPIC, and SAVETEXT for file operations. New fea-
tures specific to the Apple II version of LogoWriter include Pro-
DOS compatibility, multiple directories, a shapes page per
subdirectory, and color printing capability. New features specific to
the IBM version include the ability to customize Logo for use with
the 16 color enhanced graphics adaptor (EGA) and the 256 color
multi-color graphics array (MCGA) and the ability to employ up to
90 shapes per shapes page. The price to upgrade from version 1.1 to
version 2.0 is $35 for the Apple II and $50 for the IBM PC.

The following discussion focuses on LogoWriter version 2.0 for

’ LOGOWRITER
|

Trends in Hardware/Software 25

the Apple II and IBM PC microcomputers. It is divided into three
areas: (a) strengths of LogoWriter, (b) weaknesses of LogoWriter,
and (c) suggested enhancements that might make LogoWriter more
useful. These three areas will be addressed in turn.

STRENGTHS OF LOGOWRITER

1. The ability to easily combine text and graphics is LogoWriter’s
most highly touted feature (Papert, 1986). The commands provided
for text manipulation are easy to understand and use. The most
frequently used commands such as MARK, CUT, COPY, and
PASTE are easily accessed through use of the function keys.

2. The ability to control multiple turtles concurrently. LogoWri-
ter provides four turtles that facilitate complex drawings and anima-
tion. Their use could also provide practice in skills related to iden-
tity (determining which turtle needs to be moved) and sequencing
(determining the order that the turtles should be moved to accom-
plish some task).

3. The commands ASK, EACH, TELL, and WHO. The ability to
control multiple turtles presents the problem of achieving collective
control in some cases, and independent control in other cases. The
TELL primitive is used to determine which turtles will respond to
succeeding commands. The ASK primitive is used to temporarily
override the TELL primitive. The WHO primitive reports which
turtles are currently set to respond to commands. The EACH primi-
tive is used to make each turtle respond to a list of commands in
turn. These four primitives greatly facilitate complex programming
tasks. For example, the following procedure instructs all four turtles
to draw a square concurrently, then instructs each turtle to draw a
circle in turn:

TO DEMO

TELL [0 1 2 3]

ST

REPEAT 4 [FD 5 RT 90]

EACH [REPEAT 90 [FD 2 RT 4]]
END

26 COMPUTERS IN THE SCHOOLS

4. The ability to create “‘tool’’ procedures. Tool procedures oc-
cupy computer memory but are not routinely accessible for editing
(they can only be executed). This prevents the inadvertent alteration
of their instructions. Additionally, the computer uses its memory
more efficiently, thereby allowing larger programs to be written.
Procedures frequently needed for a variety of projects are often
loaded as tool procedures. We have developed a variety of tools,
such as the TEST, IFTRUE, and IFFALSE procedures referred to
in point 4 of the weaknesses section.

5. Automatic loading and execution of a LogoWriter program. If
a page named STARTUP is on the disk when LogoWriter begins,
LogoWriter will load that page into the computer’s memory auto-
matically. If a page contains a procedure named STARTUP, Logo-
Writer will execute the STARTUP procedure whenever that page is
loaded. To cause the automatic execution of a program whenever
LogoWriter is started, the user can place a STARTUP procedure
within a page named STARTUP on the disk.

6. The ability to “‘stamp’’ shapes on the page. Shapes facilitate
the design of small complex figures and eliminate the need to actu-
ally include turtle commands to draw figures such as a forest, a
flock of birds, a fleet of cars, and oversized letters and numerals.
Oversized letters and numerals are handy for use with younger chil-
dren.

7. Use of an actual turtle shape to represent the Logo turtle.
Many other dialects use a triangle to represent the turtle. This need-
less abstraction could be confusing to some younger children. If
users find the literal turtle shape objectionable, they can, of course,
easily choose one of 30 predefined shapes or make up a shape of
their own design.

8. Availability of a site license. Instead of charging for each copy
of LogoWriter, LCSI charges a one-time fee of $450. A school is
allowed to make copies of the software (but not printed materials)
for each computer they own. When more computers are acquired,
additional copies of the software can be made without additional
fees.

9. Availability of a home use agreement option. In addition to the
site license, a home use agreement can be purchased for an addi-

Trends in Hardware/Software 27

tional one-time fee of $150. This permits children to take a copy of
LogoWriter home and use it on their own computers.

WEAKNESSES OF LOGOWRITER

1. LogoWriter allows more than one procedure to have the same
name. However, only the procedure closest to the end of the page is
used. This can cause considerable confusion, since editing the first
procedure will have no effect on the way the second procedure with
that same name works. (Logo searches from the bottom up.)

2. The four turtles are numbered 0 through 3. Ask anyone what
number they start counting with and the answer will most likely be
one rather than zero. Even though memory locations in the com-
puter start at zero, and it is thus understandable that programmers
would choose to begin with zero, it is difficult for most people
(especially children) to make this adjustment. We agree with Ke-
meny and Kurtz (1985) who included the following among their
design criteria for BASIC: (a) advanced features should be added in
such a way that any inconvenience or difficulty affects the expert
rather than the novice, (b) no hardware expertise should be neces-
sary, and (c) the user should be shielded from the operating system.
We recommend that LCSI modify LogoWriter to number the turtles
from 1 to 4.

3. LogoWriter lacks the LOCAL primitive. This complicates the
writing of programs and tool procedures. For example, if a user
creates a variable and inadvertently assigns it a name used by an
existing procedure, the results are unpredictable. Possible scenarios
follow: (a) The program might stop with an error message; (b) the
program might continue to run properly (if the variable is not subse-
quently accessed); (c) the program might continue to run properly
but terminate at a later time when the variable is subsequently ac-
cessed; or (d) the program might continue to run, but do so incor-
rectly. Scenarios (c) and (d) cause problems that are obscure and
difficult to diagnose. The technical support staff at LCSI advises,
via telephone, that the LOCAL primitive was removed from Logo-
Writer because educators were ‘‘abusing’” it. The staff suggested
that the abuse consisted of using local variables in procedures in
order to save main memory. We do not agree that such a practice

28 COMPUTERS IN THE SCHOOLS

constitutes abuse, and we feel the LOCAL primitive should be rein-
stituted in LogoWriter.

4. The syntax and operation of the IF and IFELSE commands are
difficult for beginners to understand. Both children and adults
sometimes have difficulty with these statements. Some other dia-
lects of Logo provide a TEST primitive (to test a condition), an
IFTRUE primitive (to execute one or more commands if the TEST
was true), and an IFFALSE primitive (to execute one or more com-
mands if the condition was false). We feel these primitives are less
abstract, and are therefore better choices than IF and IFELSE.
Therefore, we have written TEST, IFTRUE, and IFFALSE primi-
tives for LogoWriter (Crume & Maddux, 1989). The source code
for the primitives is duplicated here:

TO TEST :MYLIST
IF NOT LIST? :MYLIST [(TYPE [TEST
DOESN’T LIKE] :MYLIST [AS INPUT]
CHAR 13) STOP]
IFELSE RUN :MYLIST
[MAKE ““TEST.RESULT ““TRUE]
[MAKE “TEST.RESULT ““FALSE]
END

TO IFTRUE :LIST.OF.COMMANDS
IF NOT LIST? :LIST.OF.COMMANDS
[(TYPE [IFTRUE DOESN’T LIKE]
:LIST.OF.COMMANDS
[AS INPUT] CHAR 13) STOP]
IF NAME? “TEST.RESULT
[IF :TEST.RESULT = “TRUE
[RUN :LIST.OF.COMMANDS]]
END

TO IFFALSE :LIST.OF.COMMANDS
IF NOT LIST? :LIST.OF.COMMANDS
[(TYPE [IFFALSE DOESN’T LIKE]
:LIST.OF.COMMANDS
[AS INPUT] CHAR 13) STOP]
IF NAME? “TEST.RESULT

Trends in Hardware/Software 29

[IF :TEST.RESULT = “‘FALSE
[RUN :LIST.OF.COMMANDS]]
END

These procedures do not work exactly like the real primitives of
other Logo dialects. First, the TEST primitive requires a list as
input. This allows the input to be error trapped and also reminds us
that a user defined version of TEST is being used. Second, TEST
stores its result in a variable called TEST.RESULT. IFTRUE and
IFFALSE use the contents of TEST.RESULT to determine whether
they should execute the commands in their input. Using a variable
limits the capability to nest TEST primitives —but there are ways to
circumvent this limitation. For example, the procedure WINTER
(containing a TEST command) is shown below:

TO WINTER
TEST [:WEATHER = “SNOWING]
IFTRUE [PRINT [IT IS SNOWING]]
IFFALSE [PRINT [IT IS NOT SNOWING]]
END

This procedure executes without any problems. However, if the
following commands (which use winter) are executed, a “‘bug’’ is
encountered:

MAKE “MONTH “DECEMBER
MAKE “WEATHER ¢‘RAINING
TEST [OR :MONTH = ‘“NOVEMBER OR :MONTH =
“DECEMBER
:MONTH = “JANUARY]
IFTRUE [WINTER]
IFFALSE [PRINT [IT MUST NOT BE WINTER]]

The problem is both the [IFTRUE and IFFALSE commands will be
executed when only the IFTRUE is appropriate. IFTRUE is prop-
erly executed because the test for the month is true. IFFALSE is
erroneously executed because the TEST command in WINTER
changes the value of TEST.RESULT to false. This problem can be
avoided by: (a) Not nesting TEST, IFTRUE and IFFALSE com-

30 COMPUTERS IN THE SCHOOLS

mands; or (b) inserting a duplicate TEST command in front of the
IFFALSE command as shown below:

MAKE “MONTH “DECEMBER
MAKE “WEATHER “‘RAINING
TEST [OR :MONTH = “NOVEMBER OR :MONTH =
““DECEMBER
:MONTH = “JANUARY]
IFTRUE [WINTER]
TEST [OR :MONTH = “NOVEMBER OR :MONTH =
“DECEMBER
:MONTH = “JANUARY]
IFFALSE [PRINT [IT MUST NOT BE WINTER]]

Both solutions are inconvenient. However, there are many situa-
tions in which this nesting limitation will not be a problem and
TEST, IFTRUE, and IFFALSE primitives are convenient for those
who prefer them over IF and IFELSE.

5. LogoWriter does not include a ‘““FENCE’’ primitive. The
FENCE primitive in other versions of Logo prevents the turtle from
leaving the screen. Young children might benefit from such a primi-
tive as they sometimes do not understand what is happening when
the turtle leaves one side of the screen and appears on the other side.

6. LogoWriter does not include a ‘““WINDOW’’ primitive.
Whereas the FENCE primitive prevents the turtle from leaving the
screen, WINDOW allows it to leave without appearing on the other
side. This primitive (available in many other dialects of Logo) is
useful when graphing mathematical functions in which the value of
the function exceeds the scaling factor of the window. In LogoWri-
ter, the lack of a WINDOW primitive causes the tip of the graph to
wrap around and appear on the other side of the screen, creating a
cluttered display. To prevent this, extra programming must be done
to account for such function values.

7. The turtle is the only shape that pivots on its axis when its
heading is changed. Employing this feature in conjunction with the
command SLOWTURTLE (which slows the turtle’s movement) al-
lows teachers to explain and demonstrate the turtle’s response to

Trends in Hardware/Software 31

various commands. The following procedure, which draws a
square, demonstrates this:

TO DEMO

SLOWTURTLE

REPEAT 4 [FD 50 RT 90]
END

Unfortunately, the other shapes cannot pivot, even if their headings
are changed. This inconsistency can be confusing to beginners who
change the shape of the turtle.

8. There is no way to easily execute operating system commands
from within LogoWriter. The ability to perform certain tasks such as
formatting floppy disks from within the LogoWriter program would
be beneficial for many users.

9. The clipboard reports as a single word whatever is placed into
it. This makes it difficult to analyze the clipboard’s contents. For
example, if the text ““Hello there, John. How are you today?”’ is
placed in the clipboard, and the command PRINT FIRST CLIP-
BOARD is issued, the result is the letter ““H’’ rather than the word
““Hello.”” The primitive PARSE will convert the words into a list
(according to LogoWriter’s internal rules), but this is too advanced
for most beginning users.

10. LogoWriter gave up the ability to type TO followed by the
name of a procedure to enter procedure writing mode. Also elimi-
nated was the ability to type EDIT followed by the name of a proce-
dure to enter procedure editing mode. Other versions of Logo pro-
vide these two capabilities. In LogoWriter, one must go to the
“flip>> side of the page to enter a procedure. (The flip side is ac-
cessed by holding down a control key and striking the F key. This
procedure is intended to be analogous to turning to the flip side of a
piece of paper. This may be an advantage for first-time users of
Logo but is confusing to users who have previous experience with
other dialects of the language.) To edit in LogoWriter, one must go
to the flip side and position the cursor to the line to be edited.
Finding the correct line in the desired procedure can be difficult and
time consuming.

We have written the procedures EDIT, EDIT!, and BLANKS.

32 COMPUTERS IN THE SCHOOLS

These procedures search the flip side for the named procedure and
either position its first line at the top of the screen (if found) or issue
an error message (if not found). Then, to edit the procedure, the
user simply goes to the flip side. The procedures are shown below:

TO EDIT :PROCEDURE
IF FRONT? [FLIP]
TOP EDIT! :PROCEDURE 1
CU SEARCH :PROCEDURE UNSELECT SOL
REPEAT 18 [CD] REPEAT 18 [CU]
FLIP
END

TO EDIT! :X :C
SEARCH WORD ““TO WORD BLANKS :C :X
IF FOUND? [STOP]
IF :C > 10 [(SHOW :PROCEDURE :X *“NOT ““FOUND)
FLIP STOPALL]
EDIT! :X:C + 1
END

TO BLANKS :C
IFELSE :C = 1 [OP CHAR 32]
[OP WORD CHAR 32 BLANKS :C — 1]
END

11. Flexible disk management commands are not included. The
ability to read and write directly to a disk file is an important feature
lacking in LogoWriter. Although one can read and write an entire
file via LOADTEXT and SAVETEXT, these do not allow process-
ing information on a record-by-record basis. Excellent disk man-
agement commands can be found in Logo II, another LCSI dialect
that is, so far, not available for machines other than the Apple II.

12. LogoWriter does not include the DRIBBLE primitive. The
dribble primitive allows setting up dribble files to record all key-
strokes. This primitive is handy for teaching and for research.
DRIBBLE is included in the Logo II version referred to above.

13. LogoWriter does not provide a way to switch between color
palettes on an IBM PC equipped with a CGA (color graphics adap-
tor). The CGA provides both a white/cyan/magenta and a red/yel-

Trends in Hardware/Software 33

low/green palette. The ability to switch between the two would en-
hance graphics applications for CGA-based computers.

14. LogoWriter lack of a nice selection of tool procedures. Tool
procedures add a great deal of power and flexibility to LogoWriter.
However, most educators do not have the time to develop their own
tools. Perhaps LCSI could set up a ““toolbox’” into which educators
could deposit tool procedures others might deem beneficial, and
locate tools which they might be able to employ in their own curric-
ulum.

15. LogoWriter’s documentation is poor. Although we have seen
much worse documentation, LogoWriter’s reference manual is not
oriented toward the beginning user or the teacher with no experi-
ence with Logo. Although the purchase price covers an attractive
kit with impressive-looking activity cards, there is no introduction
to the language, and the manual is confusing and incomplete.

ENHANCEMENTS TO LOGOWRITER

1. The limit of three foreground colors and a background color
on CGA-equipped computers limits various applications. We pro-
pose a low/medium resolution graphics mode that would allow the
use of all supported colors for text applications.

2. The inclusion of sprites (independently executing processes)
would provide for sophisticated animation. Although one can ad-
dress up to four turtles concurrently, independent execution of com-
mands by each turtle is not allowed. Although the IBM PC does not
have a sprite controller chip (as did the Texas Instruments TI99/
4A), it should be possible to insert procedures into the ““process
control stack’” and allow the PC’s standard clock (which ticks 18.2
times a second) to execute such code at a rate acceptable for numer-
ous animation applications.

CONCLUSIONS

Logo, based upon developmental Piagetian child psychology, is
the first (and only) computer language developed specifically for
children. It is easy to learn and use, yet provides a powerful learn-
ing tool for children. Although considered a “‘toy’” computer lan-

34 COMPUTERS IN THE SCHOOLS

guage by the uninformed, Logo is powerful and flexible enough for
many sophisticated programming projects. As these facts become
more widely known, Logo (and LogoWriter) may surpass other,
more traditional computer languages as the choice in most curric-
ula, not only for teaching beginning programming, but also for use
as a powerful general purpose programming language.

REFERENCES

Billstein, R., Libeskind, S., & Lott, J. (1985). Logo: MIT Logo for the Apple.
Menlo Park, CA: Benjamin/Cummings Publishing Co.

Crume, C. E., & Maddux, C. D. (1989). Adding a set of alternative conditional
primitives to LogoWriter. Logo Exchange, 8(1), 26-27.

Kemeny, J. G., & Kurtz, T. E. (1985). Back to BASIC: The history, corruption,
and future of the language. Addison-Wesley.

Logo Computer Systems, Inc. (1988). LogoWriter reference guide. Vaudreuil,
Quebec Author.

Maddux, C. D., & Johnson, D. L. (1988). Logo: Methods and curriculum for
teachers. New York: The Haworth Press.

Papert, S. (1980). Mind-Storms: Children, computers, and powerful ideas. New
York: Basic Books.

Papert, S. (1986). The next step: LogoWriter. Classroom Computer Learning,
6(7), 38-40.

